Choropleth Maps
Offline Plotly Usage
Get imports and set everything up to be working offline.
import chart_studio.plotly as py
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
Now set up everything so that the figures show up in the notebook:
init_notebook_mode(connected=True)
More info on other options for Offline Plotly usage can be found here.
Choropleth US Maps
Plotly’s mapping can be a bit hard to get used to at first, remember to reference the cheat sheet in the data visualization folder, or find it online here.
import pandas as pd
Now we need to begin to build our data dictionary. Easiest way to do this is to use the dict() function of the general form:
- type = ‘choropleth’,
- locations = list of states
- locationmode = ‘USA-states’
- colorscale=
Either a predefined string:
'pairs' | 'Greys' | 'Greens' | 'Bluered' | 'Hot' | 'Picnic' | 'Portland' | 'Jet' | 'RdBu' | 'Blackbody' | 'Earth' | 'Electric' | 'YIOrRd' | 'YIGnBu'
or create a custom colorscale
- text= list or array of text to display per point
- z= array of values on z axis (color of state)
- colorbar = {‘title’:‘Colorbar Title’})
Here is a simple example:
data = dict(type = 'choropleth',
locations = ['AZ','CA','NY'],
locationmode = 'USA-states',
colorscale= 'Portland',
text= ['text1','text2','text3'],
z=[1.0,2.0,3.0],
colorbar = {'title':'Colorbar Title'})
Then we create the layout nested dictionary:
layout = dict(geo = {'scope':'usa'})
Then we use:
go.Figure(data = [data],layout = layout)
to set up the object that finally gets passed into iplot()
choromap = go.Figure(data = [data],layout = layout)
iplot(choromap)
<div id="0ffd83f2-2d09-4b5b-a347-b966e925bea9" class="plotly-graph-div" style="height:525px; width:100%;"></div>
<script type="text/javascript">
require(["plotly"], function(Plotly) {
window.PLOTLYENV=window.PLOTLYENV || {};
if (document.getElementById("0ffd83f2-2d09-4b5b-a347-b966e925bea9")) {
Plotly.newPlot(
'0ffd83f2-2d09-4b5b-a347-b966e925bea9',
[{"colorbar": {"title": {"text": "Colorbar Title"}}, "colorscale": [[0.0, "rgb(12,51,131)"], [0.25, "rgb(10,136,186)"], [0.5, "rgb(242,211,56)"], [0.75, "rgb(242,143,56)"], [1.0, "rgb(217,30,30)"]], "locationmode": "USA-states", "locations": ["AZ", "CA", "NY"], "text": ["text1", "text2", "text3"], "type": "choropleth", "z": [1.0, 2.0, 3.0]}],
{"geo": {"scope": "usa"}, "template": {"data": {"bar": [{"error_x": {"color": "#2a3f5f"}, "error_y": {"color": "#2a3f5f"}, "marker": {"line": {"color": "#E5ECF6", "width": 0.5}}, "type": "bar"}], "barpolar": [{"marker": {"line": {"color": "#E5ECF6", "width": 0.5}}, "type": "barpolar"}], "carpet": [{"aaxis": {"endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f"}, "baxis": {"endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f"}, "type": "carpet"}], "choropleth": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "type": "choropleth"}], "contour": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "colorscale": [[0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"]], "type": "contour"}], "contourcarpet": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "type": "contourcarpet"}], "heatmap": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "colorscale": [[0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"]], "type": "heatmap"}], "heatmapgl": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "colorscale": [[0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"]], "type": "heatmapgl"}], "histogram": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "histogram"}], "histogram2d": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "colorscale": [[0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"]], "type": "histogram2d"}], "histogram2dcontour": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "colorscale": [[0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"]], "type": "histogram2dcontour"}], "mesh3d": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "type": "mesh3d"}], "parcoords": [{"line": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "parcoords"}], "pie": [{"automargin": true, "type": "pie"}], "scatter": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scatter"}], "scatter3d": [{"line": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scatter3d"}], "scattercarpet": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scattercarpet"}], "scattergeo": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scattergeo"}], "scattergl": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scattergl"}], "scattermapbox": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scattermapbox"}], "scatterpolar": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scatterpolar"}], "scatterpolargl": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scatterpolargl"}], "scatterternary": [{"marker": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "type": "scatterternary"}], "surface": [{"colorbar": {"outlinewidth": 0, "ticks": ""}, "colorscale": [[0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"]], "type": "surface"}], "table": [{"cells": {"fill": {"color": "#EBF0F8"}, "line": {"color": "white"}}, "header": {"fill": {"color": "#C8D4E3"}, "line": {"color": "white"}}, "type": "table"}]}, "layout": {"annotationdefaults": {"arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1}, "coloraxis": {"colorbar": {"outlinewidth": 0, "ticks": ""}}, "colorscale": {"diverging": [[0, "#8e0152"], [0.1, "#c51b7d"], [0.2, "#de77ae"], [0.3, "#f1b6da"], [0.4, "#fde0ef"], [0.5, "#f7f7f7"], [0.6, "#e6f5d0"], [0.7, "#b8e186"], [0.8, "#7fbc41"], [0.9, "#4d9221"], [1, "#276419"]], "sequential": [[0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"]], "sequentialminus": [[0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"]]}, "colorway": ["#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52"], "font": {"color": "#2a3f5f"}, "geo": {"bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white"}, "hoverlabel": {"align": "left"}, "hovermode": "closest", "mapbox": {"style": "light"}, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": {"angularaxis": {"gridcolor": "white", "linecolor": "white", "ticks": ""}, "bgcolor": "#E5ECF6", "radialaxis": {"gridcolor": "white", "linecolor": "white", "ticks": ""}}, "scene": {"xaxis": {"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white"}, "yaxis": {"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white"}, "zaxis": {"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white"}}, "shapedefaults": {"line": {"color": "#2a3f5f"}}, "ternary": {"aaxis": {"gridcolor": "white", "linecolor": "white", "ticks": ""}, "baxis": {"gridcolor": "white", "linecolor": "white", "ticks": ""}, "bgcolor": "#E5ECF6", "caxis": {"gridcolor": "white", "linecolor": "white", "ticks": ""}}, "title": {"x": 0.05}, "xaxis": {"automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": {"standoff": 15}, "zerolinecolor": "white", "zerolinewidth": 2}, "yaxis": {"automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": {"standoff": 15}, "zerolinecolor": "white", "zerolinewidth": 2}}}},
{"responsive": true}
).then(function(){
var gd = document.getElementById(‘0ffd83f2-2d09-4b5b-a347-b966e925bea9’); var x = new MutationObserver(function (mutations, observer) {{ var display = window.getComputedStyle(gd).display; if (!display || display === ‘none’) {{ console.log([gd, ‘removed!']); Plotly.purge(gd); observer.disconnect(); }} }});
// Listen for the removal of the full notebook cells var notebookContainer = gd.closest('#notebook-container’); if (notebookContainer) {{ x.observe(notebookContainer, {childList: true}); }}
// Listen for the clearing of the current output cell var outputEl = gd.closest('.output'); if (outputEl) {{ x.observe(outputEl, {childList: true}); }}
})
};
});
</script>
</div>
Real Data US Map Choropleth
Now let’s show an example with some real data as well as some other options we can add to the dictionaries in data and layout.
df = pd.read_csv('2011_US_AGRI_Exports')
df.head()
code | state | category | total exports | beef | pork | poultry | dairy | fruits fresh | fruits proc | total fruits | veggies fresh | veggies proc | total veggies | corn | wheat | cotton | text | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | AL | Alabama | state | 1390.63 | 34.4 | 10.6 | 481.0 | 4.06 | 8.0 | 17.1 | 25.11 | 5.5 | 8.9 | 14.33 | 34.9 | 70.0 | 317.61 | Alabama<br>Beef 34.4 Dairy 4.06<br>Fruits 25.1... |
1 | AK | Alaska | state | 13.31 | 0.2 | 0.1 | 0.0 | 0.19 | 0.0 | 0.0 | 0.00 | 0.6 | 1.0 | 1.56 | 0.0 | 0.0 | 0.00 | Alaska<br>Beef 0.2 Dairy 0.19<br>Fruits 0.0 Ve... |
2 | AZ | Arizona | state | 1463.17 | 71.3 | 17.9 | 0.0 | 105.48 | 19.3 | 41.0 | 60.27 | 147.5 | 239.4 | 386.91 | 7.3 | 48.7 | 423.95 | Arizona<br>Beef 71.3 Dairy 105.48<br>Fruits 60... |
3 | AR | Arkansas | state | 3586.02 | 53.2 | 29.4 | 562.9 | 3.53 | 2.2 | 4.7 | 6.88 | 4.4 | 7.1 | 11.45 | 69.5 | 114.5 | 665.44 | Arkansas<br>Beef 53.2 Dairy 3.53<br>Fruits 6.8... |
4 | CA | California | state | 16472.88 | 228.7 | 11.1 | 225.4 | 929.95 | 2791.8 | 5944.6 | 8736.40 | 803.2 | 1303.5 | 2106.79 | 34.6 | 249.3 | 1064.95 | California<br>Beef 228.7 Dairy 929.95<br>Frui... |
Now out data dictionary with some extra marker and colorbar arguments:
data = dict(type='choropleth',
colorscale = 'YIOrRd',
locations = df['code'],
z = df['total exports'],
locationmode = 'USA-states',
text = df['text'],
marker = dict(line = dict(color = 'rgb(255,255,255)',width = 2)),
colorbar = {'title':"Millions USD"}
)
And our layout dictionary with some more arguments:
layout = dict(title = '2011 US Agriculture Exports by State',
geo = dict(scope='usa',
showlakes = True,
lakecolor = 'rgb(85,173,240)')
)
choromap = go.Figure(data = [data],layout = layout)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-15-243104ae4228> in <module>
----> 1 choromap = go.Figure(data = [data],layout = layout)
~/.local/lib/python3.6/site-packages/plotly/graph_objs/_figure.py in __init__(self, data, layout, frames, skip_invalid, **kwargs)
606 is invalid AND skip_invalid is False
607 """
--> 608 super(Figure, self).__init__(data, layout, frames, skip_invalid, **kwargs)
609
610 def add_area(
~/.local/lib/python3.6/site-packages/plotly/basedatatypes.py in __init__(self, data, layout_plotly, frames, skip_invalid, **kwargs)
155
156 # ### Import traces ###
--> 157 data = self._data_validator.validate_coerce(data, skip_invalid=skip_invalid)
158
159 # ### Save tuple of trace objects ###
~/.local/lib/python3.6/site-packages/_plotly_utils/basevalidators.py in validate_coerce(self, v, skip_invalid)
2643 else:
2644 trace = self.class_map[trace_type](
-> 2645 skip_invalid=skip_invalid, **v_copy
2646 )
2647 res.append(trace)
~/.local/lib/python3.6/site-packages/plotly/graph_objs/__init__.py in __init__(self, arg, autocolorscale, coloraxis, colorbar, colorscale, customdata, customdatasrc, geo, hoverinfo, hoverinfosrc, hoverlabel, hovertemplate, hovertemplatesrc, hovertext, hovertextsrc, ids, idssrc, locationmode, locations, locationssrc, marker, meta, metasrc, name, reversescale, selected, selectedpoints, showscale, stream, text, textsrc, uid, uirevision, unselected, visible, z, zauto, zmax, zmid, zmin, zsrc, **kwargs)
81395 self["colorbar"] = colorbar if colorbar is not None else _v
81396 _v = arg.pop("colorscale", None)
> 81397 self["colorscale"] = colorscale if colorscale is not None else _v
81398 _v = arg.pop("customdata", None)
81399 self["customdata"] = customdata if customdata is not None else _v
~/.local/lib/python3.6/site-packages/plotly/basedatatypes.py in __setitem__(self, prop, value)
3477 # ### Handle simple property ###
3478 else:
-> 3479 self._set_prop(prop, value)
3480
3481 # Handle non-scalar case
~/.local/lib/python3.6/site-packages/plotly/basedatatypes.py in _set_prop(self, prop, val)
3764 return
3765 else:
-> 3766 raise err
3767
3768 # val is None
~/.local/lib/python3.6/site-packages/plotly/basedatatypes.py in _set_prop(self, prop, val)
3759 validator = self._validators.get(prop)
3760 try:
-> 3761 val = validator.validate_coerce(val)
3762 except ValueError as err:
3763 if self._skip_invalid:
~/.local/lib/python3.6/site-packages/_plotly_utils/basevalidators.py in validate_coerce(self, v)
1619
1620 if not v_valid:
-> 1621 self.raise_invalid_val(v)
1622
1623 return v
~/.local/lib/python3.6/site-packages/_plotly_utils/basevalidators.py in raise_invalid_val(self, v, inds)
281 typ=type_str(v),
282 v=repr(v),
--> 283 valid_clr_desc=self.description(),
284 )
285 )
ValueError:
Invalid value of type 'builtins.str' received for the 'colorscale' property of choropleth
Received value: 'YIOrRd'
The 'colorscale' property is a colorscale and may be
specified as:
- A list of colors that will be spaced evenly to create the colorscale.
Many predefined colorscale lists are included in the sequential, diverging,
and cyclical modules in the plotly.colors package.
- A list of 2-element lists where the first element is the
normalized color level value (starting at 0 and ending at 1),
and the second item is a valid color string.
(e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']])
- One of the following named colorscales:
['aggrnyl', 'agsunset', 'algae', 'amp', 'armyrose', 'balance',
'blackbody', 'bluered', 'blues', 'blugrn', 'bluyl', 'brbg',
'brwnyl', 'bugn', 'bupu', 'burg', 'burgyl', 'cividis', 'curl',
'darkmint', 'deep', 'delta', 'dense', 'earth', 'edge', 'electric',
'emrld', 'fall', 'geyser', 'gnbu', 'gray', 'greens', 'greys',
'haline', 'hot', 'hsv', 'ice', 'icefire', 'inferno', 'jet',
'magenta', 'magma', 'matter', 'mint', 'mrybm', 'mygbm', 'oranges',
'orrd', 'oryel', 'peach', 'phase', 'picnic', 'pinkyl', 'piyg',
'plasma', 'plotly3', 'portland', 'prgn', 'pubu', 'pubugn', 'puor',
'purd', 'purp', 'purples', 'purpor', 'rainbow', 'rdbu', 'rdgy',
'rdpu', 'rdylbu', 'rdylgn', 'redor', 'reds', 'solar', 'spectral',
'speed', 'sunset', 'sunsetdark', 'teal', 'tealgrn', 'tealrose',
'tempo', 'temps', 'thermal', 'tropic', 'turbid', 'twilight',
'viridis', 'ylgn', 'ylgnbu', 'ylorbr', 'ylorrd']
iplot(choromap)
World Choropleth Map
Now let’s see an example with a World Map:
df = pd.read_csv('2014_World_GDP')
df.head()
data = dict(
type = 'choropleth',
locations = df['CODE'],
z = df['GDP (BILLIONS)'],
text = df['COUNTRY'],
colorbar = {'title' : 'GDP Billions US'},
)
layout = dict(
title = '2014 Global GDP',
geo = dict(
showframe = False,
projection = {'type':'Mercator'}
)
)
choromap = go.Figure(data = [data],layout = layout)
iplot(choromap)